Group rings satisfying generalized Engel conditions
نویسنده
چکیده مقاله:
Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1) y]=[[x ,_( n) y] , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y) ,_( n(x,y)) y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group and G' is a p-group, 2) if r=0 or r is not a power of a prime, then G is abelian. In this paper, also, we define some generalized Engel conditions on groups, then we present a result about unit group of group algebras which satisfies this kind of generalized Engel conditions.
منابع مشابه
On the additive maps satisfying Skew-Engel conditions
Let $R$ be a prime ring, $I$ be any nonzero ideal of $R$ and $f:Irightarrow R$ be an additivemap. Then skew-Engel condition $langle... langle langle$$f(x),x^{n_1} rangle,x^{n_2} rangle ,...,x^{n_k} rangle=0$ implies that $f (x)=0$ $forall,xin I$ provided $2neq$ char $(R)>n_1+n_2+...+n_k, $ where $n_1,n_2,...,n_k$ are natural numbers. This extends some existing results. In the end, we also gener...
متن کاملGroup Rings with Solvable «-engel Unit Groups'
Let KG be the group ring of a group G over a field of characteristic p > 0, p ^ 2, 3. Suppose G contains no element of order p (if p > 0). Group algebras KG with unit group U(KG) solvable and n-Engel are characterized. Let ATG be the group ring of a group G over a field K of characteristic p > 0 and let U(KG) denote its group of units. Several authors including Bateman [1], Bateman and Coleman ...
متن کاملProperties of k-Rings and Rings Satisfying Similar conditions
Jacobson introduced the concept of K-rings, continuing the investigation of Kaplansky and Herstein into the commutativity of rings. In this note we focus on the ring-theoretic properties of K-rings. We first construct basic examples of K-rings to be handled easily. It is shown that a semiprime K-ring of bounded index of nilpotency is a commutative domain. It is proved that if R is a prime K-rin...
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملGeneralized Skew Derivations with Engel Conditions on Lie Ideals
Let R be a prime ring and L a noncommutative Lie ideal of R. Suppose that f is a nonzero right generalized β-derivation of R associated with a β-derivation δ such that [f(x), x]k = 0 for all x ∈ L, where k is a fixed positive integer. Then either there exists s ∈ C scuh that f(x) = sx for all x ∈ R or R ⊆ M2(F ) for some field F . Moreover, if the latter case holds, then either charR = 2 or cha...
متن کاملGeneralized Burnside rings and group cohomology
We define the cohomological Burnside ring B(G,M) of a finite group G with coefficients in a ZG-module M as the Grothendieck ring of the isomorphism classes of pairs [X, u] where X is a G-set and u is a cohomology class in a cohomology group H X(G,M). The cohomology groups H ∗ X(G,M) are defined in such a way that H∗ X(G, M) ∼= ⊕iH∗(Hi,M) when X is the disjoint union of transitive G-sets G/Hi. I...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 1
صفحات 0- 0
تاریخ انتشار 2020-07
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023